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1. Introduction

A symplectic toric manifold is a symplectic manifold with a torus action satisfying certain
nice conditions. We determine the homology groups of these manifolds by producing a Morse
function from the moment map of the torus action and then using a result from Morse theory
to get results in homology.

2. Important Objects

We begin by talking about what a symplectic toric manifold is, along with a few objects
associated with such a manifold.

Definition 1. A symplectic toric manifold (M,ω,Tn, µ) is a compact connected symplectic
manifold (M,ω) along with a faithful hamiltonian action of Tn onM , where dimM = 2n, and
µ is a choice of moment map associated to the action. We say two symplectic toric manifolds
(M1, ω1,Tn1 , µ1) and (M2, ω2,Tn2 , µ2) are equivalent if there is an isomorphism λ : Tn1 → Tn2
and a λ-equivariant symplectomorphism ϕ : M1 →M2 such that µ1 = µ2 ◦ ϕ.

Two examples are the following:

(1) Let S1 act on S2 via rotations around the z-axis. Then, the action is hamiltonian
with moment map µ(x, y, z) = z.

(2) Let Tn ∼= (S1)n act on Cn by rotating each factor. That is, our action is defined by
(eit1 , . . . , eitn) · (z1, . . . , zn) = (eit1z1, . . . , e

itnzn) and has moment map µ(z1, . . . , zn) =
−1

2
(|z1|2, . . . , |zn|2).

The set µ(M) is a polytope. In the case where (M,ω,Tn, µ) is a symplectic toric manifold,
µ(M) is a special polytope called a Delzant polytope.

Definition 2. A polytope ∆ ⊆ Rn is a Delzant polytope if the following three conditions
hold:

(a) Simplicity - that is, at every vertex p there are precisely n edges u1, . . . , un at p.
(b) Rationality - that is, at every vertex p the edges ui can be written in the form p+ tvi

where vi ∈ Zn and t is in some closed interval in R.
(c) Smoothness - that is, at every vertex p the v1, . . . , vn from (b) form a Z-basis of Zn.

We know that the verticies of our moment polytope µ(M) come from fixed points but the
opposite is not always true for a general Hamiltonian torus action on M . However, in the
case of a symplectic toric manifold we can actually say that every fixed point is actually
mapped to a vertex.
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We sketch a proof here. We borrow the following result which allows us to write our moment
map in a nice form locally near a fixed point.

Theorem 3. Let (M2n, ω,Tm, µ) be a Hamiltonian Tm-space, and let q be a fixed point.
There exists a chart (U, x1, . . . , xn, y1, . . . , yn) centered at q and elements λ(1), . . . , λ(n) ∈ Zm
such that

µ|U = µ(q)− 1

2

n∑
k=1

λ(k)(x2k + y2k).

Now, let q be a fixed point. If µ(q) is an interior point of µ(M), then there is some open set
V ⊆ µ(M) surrounding µ(q). Visually we have the following picture:

µ(q)

λ(1)

λ(2)

λ(3)µ(U)

V

We have that µ : M → µ(M) is an open map and so µ(U) ⊆ V is open. However, visually
this is clearly not the case and so µ(q) must be a vertex. So, we have a bijection relating
fixed points of the action to verticies in the moment polytope. �

One immediate observation is that the λ(k) at a vertex µ(q) are the elements vk in part (b)
of Definition 2. So, the λ(k) define the edges of our polytope.

The bijection between fixed points of the action and verticies of µ(M) is very nice. And, in
fact there is an exremely nice result which states that symplectic toric manifolds are classified
by their moment polytopes. More precisely there is a bijective map

{symplectic toric manifolds} → {Delzant polytopes}
(M2n, ω,Tn, µ) 7→ µ(M).

The proof involves taking a Delzant polytope and constructing a particular symplectic re-
duction of Example (2).

3. Morse Theory

In order to compute the homology groups of the symplectic toric manifolds, we need to
introduce some fundamental results from Morse theory.

To begin, we define a what a morse function is.

Definition 4. A Morse function f : M → R is a function where the critical points of f are
nondegenerate. That is, if dfq = 0 then detHq 6= 0 where H1 is the Hessian matrix of f at
q. The index of a bilinear map Hq : Rm × Rm → R is dimension of the largest subspace of
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Rm upon which Hq is negative definite, and if q is a nondegenerate critical point of f we call
the index of the Hessian Hq the index of f at q.

At a nondegerate critical point q, there are coordinates (U, x1, . . . , xm) such that

f |U = f(q)− x21 − · · · − x2λ + x2λ+1 + · · ·+ x2m

where λ is the index of f at q. Theorem 3 tells us that the moment map for a hamiltonian
Tm-space at a fixed point looks very similar to a morse function but maps to a space of
several dimensions.

Now we state a theorem which relate Morse functions to CW-complexes. The theorem will
bridge our discussion about moment maps with homology.

Theorem 5. Let f : M → R be a Morse function, and write Ma = f−1((−∞, a]). Then,
the following hold:

(a) Let a < b and suppose f−1([a, b]) has no critical points of f . Then, Ma is diffeo-
morphic to M b, Ma is a deformation retract of M b, and Ma ↪→ M b is a homotopy
equivalence.

(b) If q is a nondegenerate critical point with index λ and f(q) = c with f−1([c− ε, c+ ε])
compact and contains no critical points of f besides q then M c+ε has the same
homotopy type of M c−ε with a λ-cell attached.

(c) If Ma is compact for all a, then M has the homotopy type of a CW-complex with
one cell of each dimension λ for each critical point of index λ.

We will only use part (c) of Theorem 5.

4. Homology

We are now ready to talk about the homology groups of M . First, let us pick some
X ∈ Rn such that the components of X are independent over Q. Let X] be the vector field
on Tn defined by X. Because the components are independent over Q, we have that the
one-parameter subgroup {exp(tX) : t ∈ R} is dense in Tn. The zeroes of X] are precisely
the fixed points of the action, and since our action is Hamiltonian we have that dµX = ιX]ω
and so dµX = 0 when X] = 0. So, the critical points of dµX are the zeroes of X] which
are the fixed points of the action which are in bijection with the verticies of the Delzant
polytope µ(M).

Now let q be a critical point of dµX . We know that µX = 〈µ,X〉 and by Theorem 3 and
linearity of the inner product, we have that locally around some open set U containing q,
there are coordinates x1, . . . , xn, y1, . . . , yn such that

µX |U = µX(q)− 1

2

n∑
k=1

〈λ(k), X〉(x2k + y2k).
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Since X has components which are independent over Q, 〈λ(k), X〉 6= 0 for all k ∈ {1, . . . , n}.
The Hessian Hq of µX at q is

〈λ(1), X〉
. . .

〈λ(n), X〉
〈λ(1), X〉

. . .

〈λ(n), X〉


and is invertible. So, µX is actually a Morse function with index 2

∣∣{k : 〈λ(k), X〉 > 0}
∣∣. In

particular there are no critical points with odd index. Since M is assumed to be compact,
by part (c) of Theorem 5 our CW-complex tells us that our chain groups Ck in our chain
complex

. . . C4 C3 C2 C1 C0 0

are free abelian groups of rank bk where bk is the number of critical points with index k.
There are no critical points with odd index, so C2k+1 = 0. And, b2k = 2

∣∣{k : 〈λ(k), X〉 > 0}
∣∣

so C2k = Zb2k . Then our chain complex is of the form

. . . Zb4 0 Zb2 0 Zb0 0

and so

Hk(M) =

{
0 k = 2m+ 1,

Z2|{m:〈λ(m),X〉>0}| k = 2m.

We note that the condition 〈λ(m), X〉 > 0 is equivalent to λ(m) lying in the upper half-space
defined by X. So, geometrically 〈λ(m), X〉 > 0 means that λ(m) “points upwards” with
respect to X. So for each k we can just count how many verticies have edges pointing
upwards with respect to X and multiply by two. That will give us the rank of our homology
groups, which we now know to be free abelian groups.
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