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I want to talk about how we can study representations Γ → G by viewing them as parametrized by
a geometric space, and how we can compute tangent spaces of this geometric space in terms of group
cohomology. Finally, I want to use this to compute the dimension of the tangent space when Γ = π1(Sg)
where Sg is a closed orientable surface of genus g.

1 The Representation Variety and the Character Variety

Let Γ be a finitely generated group and G a linear algebraic group (in most cases, we care about G = GLn).
We call Hom(Γ, G) the representation variety of Γ. In what sense is this actually a geometric space? In the
case of the free group on the generators e1, . . . , en, we have that every element of Hom(Fn, G) is determined by
where ei is sent. So, Hom(Fn, G) = Gn. Since G is an algebraic group, Hom(Γ, G) is also an algebraic group.
In the case where Γ is the quotient of some free group with relations r1, . . . , rm, then we are constrained by
the equations r1 = · · · = rm = 1.

Example 1. Let’s look at the character variety Hom(Z2, SL2(C)). To do so, consider Hom(F2, SL2(C)).
Then, ρ ∈ Hom(F2, SL2(C)) is determined by ρ((1, 0)) and ρ((0, 1)). So,

ρ((1, 0)) =


x1 x2

x3 x4



ρ((0, 1)) =


x5 x6

x7 x8



and so our Hom(F2, SL2(C)) is a subvariety of A8
C subject to the condition that det ρ((1, 0)) = det ρ((0, 1)) =

1. We get Hom(F2, SL2(C)) = SpecC[x1, . . . , x8]/(x1x4−x2x3−1, x5x8−x6x7−1). Then, F2/[F2, F2] ∼= Z2

so in order to compute Hom(Z2, SL2(C)) we just need to add additional constraints given by looking at


x1x5 + x3x6 x2x6 + x4x8

x1x7 + x3x8 x2x7 + x4x8


=


x5 x6

x7 x8


x1 x2

x3 x4


=


x1 x2

x3 x4


x5 x6

x7 x8


=


x1x5 + x2x7 x1x6 + x2x8

x3x5 + x4x7 x3x6 + x4x8


.

Then, this gives us the equations

x3x6 − x2x7 = 0

x2x6 + x4x8 − x1x6 − x2x8 = 0

x1x7 + x3x8 − x3x5 − x4x7 = 0

x2x7 − x3x6 = 0
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So, Hom(Z2, SL2(C)) is the closed subscheme of A8
C cut out by

x1x4 − x2x3 − 1 = 0

x5x8 − x6x7 − 1 = 0

x2x7 − x3x6 = 0

x2x6 + x4x8 − x1x6 − x2x8 = 0

x1x7 + x3x8 − x3x5 − x4x7 = 0

x2x7 − x3x6 = 0

In fact, this is an irreducible subscheme but we will not prove it. If we want to replace SL2(C) with GL2(C)
in the example above, we replace the x1x4 −x2x3 − 1 = x5x8 −x6x7 − 1 = 0 condition with x1x4 −x2x3 ∕= 0
and x5x8 − x6x7 ∕= 0.

Definition 4. Let Hom(Γ, G) be a representation variety, and let G act on Hom(Γ, G) act by conjugation.
Then, the quotient χG(Γ) := Hom(Γ, G)//G is the character variety.

Example 5. Fricke’s Theorem states that χSL2(F2) ∼= A3
C. The map is given as follows: a point in χSL2(F2)

is given by a pair of conjugacy classes of matrices in SL2. So, we have a point ([A], [B]) and the map is
given by ([A], [B]) → (tr(A), tr(B), tr(AB)). I’m not going to prove it, but you can find the proof in ”Trace
coordinates on Fricke spaces of some simple hyperbolic surfaces” by William Goldman on arXiv.

2 Cohomology of the adjoint representation, and tangent spaces

In this section, we want to talk about how to describe TρχG(Γ). Specifically, we discuss an isomorphism
TρχG(Γ) ∼= H1(Γ, Ad ρ) where the right-hand-side is group cohomology twisted by the adjoint representation.
First, we recall the definition of group cohomology.

Definition 6. We give the definition of H1(Γ, Ad ρ). Let f : Γ → g be any function such that for all
g1, g2 ∈ Γ

f(g1g2) = Ad ρ(g1) · f(g2) + f(g1).

Let Z1(Γ, Ad ρ) be the collection of all f functions which satisfy this. This is just the condition that f ∈ ker d2,
where d2 : C1(Γ, Ad ρ) → C2(Γ, Ad ρ) is the co-boundary map between the first and second co-chains in the
co-chain complex defining group cohomology. Then, let B1(Γ, Ad ρ) = {Ad ρ(g) · f(e) − f(e) : f : {e} →
g is a function}. This is the image of the coboundary map d1. Then, H1(Γ, Ad ρ) := Z1(Γ, Ad ρ)/B1(Γ, Ad ρ)
is the first cohomology group.

Definition 7. A C-algebra R(Γ, G) is a universal representation of Γ into G, and ρU : Γ → G(R(Γ, G)) is
a universal representation if for every C-algebra homomorphism A and every representation ρ : Γ → G(A),
there is a C-algebra homomorphism f : R(Γ, G) → A inducing G(f) : G(R(Γ, G)) → G(A) such that
ρ = G(f)ρU . As a diagram,

G(R(Γ, G))

Γ G(A)ρ

G(f)ρU

the dashed line above exists.

This exists, and is given by the following: C[G] as C[GLn] = (C[d, xij , 1 ≤ i, j ≤ n]/(d · det(xij) − 1))/I =
C[d, xij ]/I (this gives us the nonzero determinant condition), if Γ = FN = 〈γ1, . . . , γN 〉 a free group we just
get

R(FN , G) = C[d1, x1ij ]/I ⊗C · · ·⊗C C[dN , xNij ]/I

and ρU (γt) = xtij satisfies the properties. Then, if Γ = FN/H we get a quotient of R(FN , G) by respecting
the relations given by H.
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Let ρ be a point with residue field C (i.e., a closed point in our representation variety. Let rm : C[Hom(Γ, G)] →
C[Hom(Γ, G)]/m ∼= C be the projection given by inclusion of the point ρ ↩→ Hom(Γ, G). Then, the tangent
space at ρ is given by maps

C[Hom(Γ, G)] C[]/(2) Cπ: →0v

such that the composition C[Hom(Γ, G)] → C is given by rm. Intuitively, the algebra morphism v is a tangent
vector, and the condition that the composition is given by rm just says that if our vector is 0, we should get
the actual point on our space.

Every such homomorphism (and therefore tangent vector at ρ) given above is of the form rm + v, we get
that G(rm + v) ◦ ρU (γ) ∈ G(C[]/(2)). Then for γ ∈ Γ, we define a map σ : Γ → g given by

σ(γ) :=
(G(rm + v)ρU (γ))(G(rm)ρU (γ))

−1 − I


∈ g.

Here, our A is given by C[]/(2), this definition mirrors that of the derivative. One key property this map
σ satisfies is that

σ(g1g2) = Ad (π ◦ ρ(g1)) · σ(g2) + σ(g1).

Note that here, π◦ρ = ρ, since π sends a tangent vector in Tρ Hom(Γ, G) to ρ. This is precisely the condition
that σ ∈ ker d2 = Z1(Γ, Ad ρ).

So, the map Ψρ(t) = σ is a linear map Tρ Hom(Γ, G) → Z1(Γ, Ad ρ). This is in fact an isomorphism with
inverse Φρ : σ → (γ → (I + σ(γ))ρ(γ)) which is a homomorphism Γ → G(C[]/(2)), i.e., an element of
Tρ Hom(Γ, G).

The important theorem that we can now state is the following:

Theorem 8. Suppose ρ : Γ → G = GLn is a semisimple representation. Then, the isomorphism Φρ :

Z1(Γ, Ad ρ) → Tρ Hom(Γ, G) induces a linear map Φρ : H1(Γ, Ad ρ) → TρχG(Γ). And, when ρ is an

irreducible representation, Φρ is actually an isomorphism.

Proof. (Sketch) We give some reasoning why we get an isomorphism of tangent spaces. Let Oρ be the orbit
of ρ under the action by G. If we let fρ : G → Hom(Γ, G) be given by g → gρg−1, then Im(fρ) = Oρ. So,
TρOρ = Im(dfρ) = {(dfρ)(I + A) : A ∈ G, 2 = 0}.

Every tangent vector in Tρ Hom(Γ, G) comes from a map I + A where A ∈ G, so every vector v is given by
the map

γ → (I + A)ρ(γ)(I + A)−1

since our map fρ is the conjugation action. So,

(I + A)ρ(γ)(I + A)−1 = (I + (A− ρ(γ)Aρ(γ)−1))ρ(γ)

= (I + τ)ρ(γ)

where τ = A− ρ(γ)Aρ(γ)−1 = A−Ad ρ(γ) ·A. Note that here, τ is precisely an element of B1(Γ, Ad ρ)! So,

we get an isomorphism Φρ : H1(Γ, Ad ρ) → Tρ Hom(Γ, G)/TρOρ.

In the case where ρ is irreducible, we have an isomorphism Tρ Hom(Γ, G)/TρOρ → TρχG(Γ) so we get the

isomorphism as desired. (Étale slice).

Example 9. How can we compute dimTρχG(Γ) where Γ = π1(Sg) and Sg is a closed orientable surface of
genus g and G = SLn? Here, dimSLn = n2 − 1. We have that

(2− 2g) dimSLn = dimH0(Γ, Ad ρ)− dimH1(Γ, Ad ρ) + dimH2(Γ, Ad ρ).

Then, H0(Γ, Ad ρ) = slπ(Sg)
n (the elements fixed by π(Sg)). This is because of the long exact sequence on

group cohomology. Since ρ is irreducible, dimH0 = 0. Since H2 is dual to H0 since we are on a surface, we
get that

dimTρχG(π(Sg)) = dimH1(Γ, Ad ρ) = (2g − 2) dimSLn = (2g − 2)(n2 − 1).
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3 Fixed local monodromy

(Only if have time!) Let j : X = P1 \ {p1, . . . , pn+1} ↩→ P1 be the standard inclusion, and g a local system
on X. Then we can look at the pushforward j∗g which is a local system on P1. Then, we get a short exact
sequence of sheaves

0 g j∗g ⊕ig
γi 0

where ⊕ig
γi is a direct sum of skyscraper sheaves supported at the pi. Here, our stalk is just the same as

the stalk of g at pi.

Since we get a short exact sequence of sheaves on P1, we get a long exact sequence in sheaf cohomology. So,
we get

0 H0(P1, g) H0(P1, j∗g) H0(P1,⊕ig
γi) H1(P1, g) H1(P1, j∗g) H1(P1,⊕ig

γi) = 0 . . .
f0 g0 δ f1 g1

.

Since ⊕ig
γi is a skyscraper sheaf the higher cohomology groups vanish. Then, the dimension of the tangent

space at an irreducible representation is given by dimH1(P1, j∗g) and we can compute this number. That
is,

dimH1(P1, j∗g) = dimker g1 = dim Im f1 = dimH1(P1, g)− dim Im δ

= dimH1(P1, g)− (dimH0(P1,⊕ig
γi)− ker δ)

= dimH1(P1, g)− (dimH0(P1,⊕ig
γi)− Im g0)

= dimH1(P1, g)− dimH0(P1,⊕ig
γi) + dimH0(P1, j∗g)− ker g0

= dimH1(P1, g)− dimH0(P1,⊕ig
γi) + dimH0(P1, j∗g)− Im f0

= dimH1(P1, g)− dimH0(P1,⊕ig
γi) + dimH0(P1, j∗g)− dimH0(P1, g).
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