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Abstract

We discuss some aspects of Gromov-Witten theory, specifically when the Gromov-Witten invariants
are enumerative.

1 Introduction

We begin with a simple question: how do we count rational curves in a given space? We begin with an
example.

Question 1. There are infinitely many rational curves in P".

This isn’t a very interesting question, since we want an actual finite number.
Question 2. How many rational curves pass through k points in P2?

Here, we have specified conditions on our curves to try and get a finite number. Unfortunately, this still
results in an infinite number. For example, if £ = 2, we still get an infinite number because we can draw
an infinite family of quadratics which pass through two points. But if restrict two a degree 1 rational curve
(i.e., a line), we get a unique line passing through two points.

So, perhaps we should ask the following;:
Question 3. How many degree d curves in P2 through k points?

This is the first question where we might get a finite answer (say, when d = 1 and k = 2). When d = 2, a
rational conic is specified by 5 points. Consider p1,...,ps € P?. We can assume they are away from the line
at infinity V'(2) and hence write them as p; = [x;,y;, 1]. Then, the polynomial f(X,Y") given by
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gives us the (unique!) rational curve passing through these 5 points. And, these 5 points are necessary since

given just 4 points, we can generically pick a fifth point and do the above construction to get a degree 2
curve passing through these 5 points.

Notice that for d = 1,2 the number of points needed to specify a finite number of these curves is 3d — 1.
This pattern actually continues.

Proposition 4. Let Xy be the space of rational degree d curves passing through %k generically chosen
points in P2. If k # 3d — 1, then X is either empty or infinite.



Proof. A rational degree d curve is the image of a degree d morphism ¢ : P! — P2, Such a morphism is
given by three non-simultaneously vanishing sections s, 51,82 € H%(Op1(d)). Then, dim Op1(d) = d + 1
so we seek Z C H?(Op1(d))® where Z is the subvariety of H°(Op1(d))? consisting of sections which do not
simultaneously vanish. Non-vanishing is an open condition, so dim Z = 3d + 3. Note that simultaneously
scaling each s; by some A € C* yields the same morphism, so ¢ € Z/C* and dim Z/C* = 3d+3—1 = 3d—2.

Because we are only concerned with the image of ¢, we can quotient by the action of Aut(P!) = PGLy
to get Xgq0 = (Z/C*)/(PGL2) and dim X409 = 3d + 2 — dimPGLy = 3d +2 — 3 = 3d — 1. Then, if we
require our curve to pass through a generically chosen point p, this cuts down our dimension by 1. Hence,
dim Xg =3d — 1 — k. To get a finite set, we require dim Xy, =0=3d—1—k and so k = 3d — 1. O

So, this question is only interesting when k& = 3d — 1.

To formulate this question more generally, we seek a cohomological description.

2 Cohomological Formulations

Definition 5. A genus g, n-marked pre-stable curve consists of the data (C,z1,...,x,) where

1. C is a curve of arithmetic genus g, i.e., x(€¢) = 1 — g. (This differs from the geometric genus defined
as dim H'0(C, Q¢).

2. x; are smooth points of C.

Let X be a smooth projective variety. Then a genus g, n-marked stable map into X consists of
1. A genus g, pre-stable curve (C, 1, ..., x,).
2. A map f:C — X with only finitely many automorphisms

where an automorphism h is a map making the diagram

commute.

We let My, (X) = {f: (C,x1,...,2,) = X : [ is stable}. If 8 € Hy(X) is a homology class, then we say
Mg n(X,8)={f:(C,z1,...,2,) = X : f is stable, f,[C] = }.

Example 6. Consider Mo o(P?, 1), where 1 € Z = Hy(P?). Then, this is the collection of maps f : P! — P2
such that f.[P'] = 1. But this is just the collection of lines in P? which is (P?)¥ = P2

These spaces are not all quite so nice, however. The space mo,o(]}ﬂ, 2) should be all the conics in P2, but this
isn’t. This is because not all maps f : C — P? will be smooth. Due to this, there are multiple components
of this space of different dimensions.

From now on, we make the assumption that Mg,n(x , ) is smooth, compact, and all components have the
same dimension. We define

F=ev;: My,(X) > X

given by f: (C,x1,...,2,) = X = f(x;).



Let Vi,...,V, be subvarieties of X. Then, we get cohomology classes v; € H*(X). Then, eviv; is a
cohomology class, and the Poincaré dual gives us the collection of maps f : C — X such that f(z;) € V;.
We know that the cup product in cohomology is dual to intersection in homology, the class ' represents the
maps f : C — X such that f(x;) € V; for all 1 <14 < n. Because the z; vary over C, the cohomology class
is just given by morphisms f : C' — X such that f(C) intersects V; for all 1 < ¢ < n. If this is a top form

in H*(M, (X, )) then pairing it with the top homology class [M, (X, )] gives us the number of curves
satisfying our conditions. That is, we want to consider
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Definition 7. Let vq,...,v, € H*(X). We define the Gromov-Witten invariant

(Y1, Tndgp = /7 eVivL — eV Y.
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Example 8. The Gromov-Witten invariant (pq, ... ,pgd_1>52d is precisely the number of degree d rational

curves in P? passing through 3d — 1 points.

So, we have given a cohomological formulation of this curve counting business, and we can ask this question
whenever we have cohomology classes which give us a top form.

3 Properties of Gromov-Witten Invariants

Definition 9. Let w41 : My ni1(X,8) = M, (X, B) be the morphism (f : (C,z1,...,2p41) = X) —
(f:C(x1,...,2n) = X). This is called a forgetful morphism.

We have the map 7 : My, (X, ) = Mg, where (f: (C,x1,...,2,) = X) = (C,21,...,2p).

These maps exist as long as the actual target moduli space exists. The reason it doesn’t always exist is
because when sending (f : (C,z1,...,2p41) = X) = (f : (Cyx1,...,2n) = X) or (f : (Cyx1,...,2n) —
X) = (C,z1,...,2,), the resulting curve need not be stable (having finitely many automorphisms). But
this can be resolved by a process called stabilaziation (and we won’t worry about this). If n > 2 — 2¢g, then
our curve is always stable. For example, when g = 0, an automorphism sending 3 points of P! must be a
permutation of those points, and hence there are at most S3 of them.

The Gromov-Witten invariants satisfy a collection of axioms:
Proposition 10. 1. We have the equality
X X
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This is saying that f(z,+1) € X is an empty condition. Cohomologically, this is saying that

L im0 = [ e e,

Mg .n(X,B) Mg,n(X,8)

and since [X]¥ € H°(X) = Z is the fundamental class, this is just multiplication by 1.
2. If v, € H?(X,Q), then
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This is because the a curve intersects a divisor at [ 5 Yn-many points.



3. If =0, then
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If S is a complex surface, then the divisors on S are codimension 1 subvarieties. So, we can use Axiom 2 to
reduce to the case where we are computing (71, ... ,’yn>§’ﬂ where 71, ...,7, come from points. For S = P?,
the following result of Kontsevich answers our question completely.

Theorem 11 - Kontsevich Recursion. Let N; be the number of degree d curves passing through 3d — 1
points. The following recursive formula computes Ny:

3d — 4 3d—4

Ny = § d?d2Ny, N, — d3dyNy. N, )

d d+d _d< 1%2 dl d2(3d1_2> 1 2 dl d2<3d1_1)>
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The first few numbers are given by

d 3d-1 Ny

1 2 1

2 5 1

3 8 12

4 11 620

5 14 87304

6 17 2631297

7 20 14616808192

8 23 13525751027392

9 26 19385778269260800

10 29 40739017561997799680
For E a curve, the divisors are given by just points. So, using Axiom 2 we know that (71,..., ’yn>£6 can be

computed by just computing the empty bracket <>gE 5
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