Gromov-Witten Invariants and Curve Counting Talk Notes

Charlie Wu

October 16, 2023

Abstract

We discuss some aspects of Gromov-Witten theory, specifically when the Gromov-Witten invariants are enumerative.

1 Introduction

We begin with a simple question: how do we count rational curves in a given space? We begin with an example.

Question 1. There are infinitely many rational curves in \mathbb{P}^n .

This isn't a very interesting question, since we want an actual finite number.

Question 2. How many rational curves pass through k points in \mathbb{P}^2 ?

Here, we have specified conditions on our curves to try and get a finite number. Unfortunately, this still results in an infinite number. For example, if k = 2, we still get an infinite number because we can draw an infinite family of quadratics which pass through two points. But if restrict two a degree 1 rational curve (i.e., a line), we get a unique line passing through two points.

So, perhaps we should ask the following:

Question 3. How many degree d curves in \mathbb{P}^2 through k points?

This is the first question where we might get a finite answer (say, when d = 1 and k = 2). When d = 2, a rational conic is specified by 5 points. Consider $p_1, \ldots, p_5 \in \mathbb{P}^2$. We can assume they are away from the line at infinity V(z) and hence write them as $p_i = [x_i, y_i, 1]$. Then, the polynomial f(X, Y) given by

$$f(X,Y) = \det \begin{pmatrix} 1 & X & Y & X^2 & Y^2 & XY \\ 1 & x_1 & y_1 & x_1^2 & y_1^2 & x_1y_1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_5 & y_5 & x_5^2 & y_5^2 & x_5y_5 \end{pmatrix}$$

gives us the (unique!) rational curve passing through these 5 points. And, these 5 points are necessary since given just 4 points, we can generically pick a fifth point and do the above construction to get a degree 2 curve passing through these 5 points.

Notice that for d = 1, 2 the number of points needed to specify a finite number of these curves is 3d - 1. This pattern actually continues.

Proposition 4. Let $X_{d,k}$ be the space of rational degree d curves passing through k generically chosen points in \mathbb{P}^2 . If $k \neq 3d - 1$, then $X_{d,k}$ is either empty or infinite.

Proof. A rational degree d curve is the image of a degree d morphism $\varphi : \mathbb{P}^1 \to \mathbb{P}^2$. Such a morphism is given by three non-simultaneously vanishing sections $s_0, s_1, s_2 \in H^0(\mathscr{O}_{\mathbb{P}^1}(d))$. Then, dim $\mathscr{O}_{\mathbb{P}^1}(d) = d + 1$ so we seek $Z \subseteq H^0(\mathscr{O}_{\mathbb{P}^1}(d))^3$ where Z is the subvariety of $H^0(\mathscr{O}_{\mathbb{P}^1}(d))^3$ consisting of sections which do not simultaneously vanish. Non-vanishing is an open condition, so dim Z = 3d + 3. Note that simultaneously scaling each s_i by some $\lambda \in \mathbb{C}^{\times}$ yields the same morphism, so $\varphi \in Z/\mathbb{C}^{\times}$ and dim $Z/\mathbb{C}^{\times} = 3d+3-1 = 3d-2$.

Because we are only concerned with the image of φ , we can quotient by the action of Aut(\mathbb{P}^1) = PGL₂ to get $X_{d,0} = (Z/\mathbb{C}^{\times})/(\text{PGL}_2)$ and dim $X_{d,0} = 3d + 2 - \dim \text{PGL}_2 = 3d + 2 - 3 = 3d - 1$. Then, if we require our curve to pass through a generically chosen point p, this cuts down our dimension by 1. Hence, dim $X_{d,k} = 3d - 1 - k$. To get a finite set, we require dim $X_{d,k} = 0 = 3d - 1 - k$ and so k = 3d - 1.

So, this question is only interesting when k = 3d - 1.

To formulate this question more generally, we seek a cohomological description.

2 Cohomological Formulations

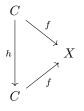
Definition 5. A genus g, n-marked pre-stable curve consists of the data (C, x_1, \ldots, x_n) where

- 1. C is a curve of arithmetic genus g, i.e., $\chi(\mathcal{O}_C) = 1 g$. (This differs from the geometric genus defined as dim $H^{1,0}(C, \Omega_C)$).
- 2. x_i are smooth points of C.

Let X be a smooth projective variety. Then a genus g, n-marked stable map into X consists of

- 1. A genus g, pre-stable curve (C, x_1, \ldots, x_n) .
- 2. A map $f: C \to X$ with only finitely many automorphisms

where an automorphism h is a map making the diagram



commute.

We let $\overline{\mathcal{M}}_{g,n}(X) = \{f : (C, x_1, \dots, x_n) \to X : f \text{ is stable}\}$. If $\beta \in H_2(X)$ is a homology class, then we say $\overline{\mathcal{M}}_{g,n}(X,\beta) = \{f : (C, x_1, \dots, x_n) \to X : f \text{ is stable}, f_*[C] = \beta\}$.

Example 6. Consider $\overline{\mathcal{M}}_{0,0}(\mathbb{P}^2, 1)$, where $1 \in \mathbb{Z} \cong H_2(\mathbb{P}^2)$. Then, this is the collection of maps $f : \mathbb{P}^1 \to \mathbb{P}^2$ such that $f_*[\mathbb{P}^1] = 1$. But this is just the collection of lines in \mathbb{P}^2 which is $(\mathbb{P}^2)^{\vee} \cong \mathbb{P}^2$.

These spaces are not all quite so nice, however. The space $\overline{\mathcal{M}}_{0,0}(\mathbb{P}^2, 2)$ should be all the conics in \mathbb{P}^2 , but this isn't. This is because not all maps $f: C \to \mathbb{P}^2$ will be smooth. Due to this, there are multiple components of this space of different dimensions.

From now on, we make the assumption that $\overline{\mathcal{M}}_{g,n}(X,\beta)$ is smooth, compact, and all components have the same dimension. We define

$$\Gamma = \operatorname{ev}_i : \overline{\mathcal{M}}_{q,n}(X) \to X$$

given by $f: (C, x_1, \ldots, x_n) \to X \mapsto f(x_i)$.

Let V_1, \ldots, V_n be subvarieties of X. Then, we get cohomology classes $\gamma_j \in H^k(X)$. Then, $\operatorname{ev}_i^* \gamma_i$ is a cohomology class, and the Poincaré dual gives us the collection of maps $f: C \to X$ such that $f(x_i) \in V_i$. We know that the cup product in cohomology is dual to intersection in homology, the class Γ represents the maps $f: C \to X$ such that $f(x_i) \in V_i$ for all $1 \leq i \leq n$. Because the x_i vary over C, the cohomology class is just given by morphisms $f: C \to X$ such that f(C) intersects V_i for all $1 \leq i \leq n$. If this is a top form in $H^{\bullet}(\overline{\mathcal{M}}_{g,n}(X,\beta))$ then pairing it with the top homology class $[\overline{\mathcal{M}}_{g,n}(X,\beta)]$ gives us the number of curves satisfying our conditions. That is, we want to consider

$$\int_{\overline{\mathcal{M}}_{g,n}(X,\beta)} \Gamma.$$

Definition 7. Let $\gamma_1, \ldots, \gamma_n \in H^*(X)$. We define the Gromov-Witten invariant

$$\langle \gamma_1, \ldots, \gamma_n \rangle_{g,\beta}^X = \int_{\overline{\mathcal{M}}_{g,n}(X,\beta)} \mathrm{ev}_1^* \gamma_1 \smile \cdots \smile \mathrm{ev}_n^* \gamma_n.$$

Example 8. The Gromov-Witten invariant $\langle p_1, \ldots, p_{3d-1} \rangle_{0,d}^{\mathbb{P}^2}$ is precisely the number of degree d rational curves in \mathbb{P}^2 passing through 3d-1 points.

So, we have given a cohomological formulation of this curve counting business, and we can ask this question whenever we have cohomology classes which give us a top form.

3 Properties of Gromov-Witten Invariants

Definition 9. Let $\pi_{n+1} : \overline{\mathcal{M}}_{g,n+1}(X,\beta) \to \overline{\mathcal{M}}_{g,n}(X,\beta)$ be the morphism $(f : (C, x_1, \dots, x_{n+1}) \to X) \mapsto (f : C(x_1, \dots, x_n) \to X)$. This is called a forgetful morphism.

We have the map $\pi : \overline{\mathcal{M}}_{g,n}(X,\beta) \to \overline{\mathcal{M}}_{g,n}$ where $(f:(C,x_1,\ldots,x_n)\to X)\mapsto (C,x_1,\ldots,x_n).$

These maps exist as long as the actual target moduli space exists. The reason it doesn't always exist is because when sending $(f : (C, x_1, \ldots, x_{n+1}) \to X) \to (f : (C, x_1, \ldots, x_n) \to X)$ or $(f : (C, x_1, \ldots, x_n) \to X) \to (C, x_1, \ldots, x_n)$, the resulting curve need not be stable (having finitely many automorphisms). But this can be resolved by a process called stabilaziation (and we won't worry about this). If n > 2 - 2g, then our curve is always stable. For example, when g = 0, an automorphism sending 3 points of \mathbb{P}^1 must be a permutation of those points, and hence there are at most S_3 of them.

The Gromov-Witten invariants satisfy a collection of axioms:

Proposition 10. 1. We have the equality

$$\langle \gamma_1, \dots, \gamma_n, [X]^{\vee} \rangle_{g,\beta}^X = \langle \gamma_1, \dots, \gamma_n \rangle_{g,\beta}^X.$$

This is saying that $f(x_{n+1}) \in X$ is an empty condition. Cohomologically, this is saying that

$$\int_{\overline{\mathcal{M}}_{g,n}(X,\beta)} \mathrm{ev}_1^* \gamma_1 \smile \cdots \smile \mathrm{ev}_n^* \gamma_n \smile [X]^{\vee} = \int_{\overline{\mathcal{M}}_{g,n}(X,\beta)} \mathrm{ev}_1^* \gamma_1 \smile \cdots \smile \mathrm{ev}_n^* \gamma_n$$

and since $[X]^{\vee} \in H^0(X) \cong \mathbb{Z}$ is the fundamental class, this is just multiplication by 1.

2. If $\gamma_n \in H^2(X, \mathbb{Q})$, then

$$\langle \gamma_1, \dots, \gamma_{n-1}, \gamma_n \rangle_{g,\beta}^X = \left(\int_{\beta} \gamma_n \right) \langle \gamma_1, \dots, \gamma_{n-1} \rangle_{g,\beta}^X$$

This is because the a curve intersects a divisor at $\int_{\beta} \gamma_n$ -many points.

3. If $\beta = 0$, then

$$\langle \gamma_1, \dots, \gamma_n \rangle_{g,0}^X = \begin{cases} \int_X \gamma_1 \smile \gamma_2 \smile \gamma_3 & n = 3\\ 0 & \text{otherwise} \end{cases}$$

If S is a complex surface, then the divisors on S are codimension 1 subvarieties. So, we can use Axiom 2 to reduce to the case where we are computing $\langle \gamma_1, \ldots, \gamma_n \rangle_{g,\beta}^S$ where $\gamma_1, \ldots, \gamma_n$ come from points. For $S = \mathbb{P}^2$, the following result of Kontsevich answers our question completely.

Theorem 11 - Kontsevich Recursion. Let N_d be the number of degree d curves passing through 3d - 1 points. The following recursive formula computes N_d :

$$N_{d} = \sum_{d_{1}+d_{2}=d} \left(d_{1}^{2} d_{2}^{2} N_{d_{1}} N_{d_{2}} \binom{3d-4}{3d_{1}-2} - d_{1}^{3} d_{2} N_{d_{1}} N_{d_{2}} \binom{3d-4}{3d_{1}-1} \right).$$

The first few numbers are given by

d	3d - 1	N_d
1	2	1
2	5	1
3	8	12
4	11	620
5	14	87304
6	17	2631297
7	20	14616808192
8	23	13525751027392
9	26	19385778269260800
10	29	40739017561997799680
:	:	:

For *E* a curve, the divisors are given by just points. So, using Axiom 2 we know that $\langle \gamma_1, \ldots, \gamma_n \rangle_{g,\beta}^E$ can be computed by just computing the empty bracket $\langle \rangle_{g,\beta}^E$.

4 References

"An Introduction to Gromov-Witten Theory" by Simon Rose, https://arxiv.org/abs/1407.1260