Non-Abelian Hodge Theory

Charlie Wu

July 28, 2024

Abstract

These are notes for a talk on Non-Abelian Hodge Theory for Elden's Seminar. I want to talk about the Riemann-Hilbert correspondence and the correspondence between Higgs bundles and local systems. In particular, I want to talk about \mathbb{C} -VHS and how it relates to the \mathbb{C}^* on the moduli space of Higgs bundles. I then want to talk about parabolic Higgs bundles in the case of curves, especially when $X = \mathbb{P}^1 \setminus D$.

1 From first year topology to non-abelian cohomology

Let X be a compact Kähler manifold (for example, any smooth projective variety over \mathbb{C}). We have the following isomorphisms:

 $\operatorname{Hom}(\pi_1(X),\mathbb{C})//\mathbb{C} \cong H^1(X,\mathbb{C}) \cong H^1_{\operatorname{dR}}(X) \cong H^1_{\operatorname{Dol}}(X) \cong H^{1,0}(X) \oplus H^{0,1}(X) \cong H^0(X,\Omega^1_X) \oplus H^1(X,\mathscr{O}_X).$

The first isomorphism comes from the Universal Coefficient Theorem, the isomorphism between de Rham and Dolbeault cohomology comes from the Kähler-ness of the manifold, and the last isomorphism comes from the general result in Hodge theory that $H^q(X, \Omega_X^p) = H^{p,q}(X)$. A class in cohomology [α] is therefore equivalent to a 1-cocycle (gluing data for a rank 1 bundle) and a choice of 1-form on X.

We seek to study a non-abelian analogue of the phenomenon above, meaning the coefficients are some nonabelian group. The most natural group, is of course, some matrix group. For now, we set $G = \operatorname{GL}_n(\mathbb{C})$ but if we let G be a subgroup (say, U(n), SU(n), SL₂, etc. we get interesting behavior as well).

We define the following spaces:

Definition 1.1. Let $M_{Betti}(X, r) = Hom(\pi_1(X), GL_r(\mathbb{C})) / / GL_r(\mathbb{C})$. This is the character variety of $\pi_1(X)$. Let $M_{dR}(X, r)$ be the moduli space of flat vector bundles on X.

Theorem 1.2 - (Riemann-Hilbert). There are homeomorphisms $M_{Betti}(X, r) \cong M_{dR}(X, r) \cong L$, where L_r is the space of local systems on X of rank r.

Proof. The maps are as follows:

- 1. $f: M_{dR}(X, r) \to \mathbb{L}_r$ is given by $f: (V, \nabla) \mapsto \ker(\nabla)$ with inverse $\mathbb{V} \mapsto (\mathbb{V} \otimes_{\mathbb{C}} \mathscr{O}_X, \mathrm{id} \otimes d)$.
- M_{dR}(X, r) → M_{Betti}(X, r) is given by monodromy of solutions. This is a highly transcendental operation, and I am not aware of any general method of writing out this map in coordinates. Any special cases worked out (besides r = 1) would be extremely interesting! Best to sketch a picture here. Make sure to mention that monodromy data around a puncture is given by a conjugacy class because π₁(X) is defined only up to conjugacy prior to picking a base point, and that complex analysis can only detect homotopy classes of loops.

Remark 1.3. M_{Betti} and M_{dR} are meant to be non-abelian cohomology theories, but they do not have a known group structure. These are only pointed spaces.

The story for abelian cohomology tells us that there should be a fourth space $M_{Dol}(X, r)$ which is analogous to Dolbeault cohomology and is homeomorphic to the first three. Points in this space should consists of pairs (E, θ) where E is some sort vector bundle and θ is a 1-form.

2 Higgs bundles

The correct object to put inside $M_{Dol}(X, r)$ are rank r Higgs bundles on X.

Definition 2.1. A Higgs bundle (E, θ) on X is a (holomorphic) vector bundle E with a \mathscr{O}_X -linear map $\theta: E \to E \otimes \Omega^1_X$ such that $\theta \wedge \theta = 0$.

We call a subbundle $F \subseteq E$ a sub-Higgs bundle if $\theta(F) \subseteq F \otimes \Omega^1_X$.

Remark 2.2. If X is a smooth projective variety, GAGA tells us that E is in fact an algebraic vector bundle and θ is an algebraic End(E)-valued 1-form.

Definition 2.3. For a vector bundle W on X, write $\mu(W) = c_1(W) \cdot [\omega]^{\dim X-1} / \operatorname{rank} W$ to be the slope of W. A vector bundle V is stable (resp. semistable) if for all proper nonzero subbundles $W \subseteq V$ we have that $\mu(W) < \mu(V)$ (resp. $\mu(W) \le \mu(V)$).

We say a Higgs bundle (E, θ) is a stable Higgs bundle if $\mu(F) < \mu(E)$ for all sub-Higgs bundles $F \subseteq E$.

We say a Higgs bundle is polystable if it is the direct sum of stable Higgs bundles.

Definition 2.4. Let $M_{\text{Dol}}(X, r)$ be the rank r polystable Higgs bundles such that $c_1(E) \cdot [\omega]^{\dim X - 1} = c_2(E) \cdot [\omega]^{\dim X - 2} = 0.$

Theorem 2.5 - (Non-Abelian Hodge Theorem). There is a homeomorphism (a \mathbb{R} -analytic isomorphism (this is meaningless) $M_{\text{Dol}}(X, r) \cong M_{\text{Betti}}(X, r)$. The stable Higgs bundles correspond precisely to the irreducible representations in $M_{\text{Betti}}(X, r)$.

Proof. Analysis through harmonic bundles. The $c_1(E) \cdot [\omega]^{\dim X-1} = c_2(E) \cdot [\omega]^{\dim X-2} = 0$ condition is to ensure that certain metrics exist to make the analysis work.

Example 2.6. Let *C* be a smooth proper curve of genus *g* and let r = 1. Then, $M_{Dol}(c, 1) \cong Jac(C) \times H^0(X, \Omega^1_X) \cong (S^1)^{2g} \times \mathbb{C}^g$. On the other hand, $M_{Betti}(C, 1) = Hom(H_1(X), \mathbb{C}^*) = Hom(\mathbb{Z}^{2g}, \mathbb{C}^*) = (\mathbb{C}^*)^{2g}$. We know that

$$(S^1)^{2g} \times \mathbb{C}^g \cong (S^1)^{2g} \times (\mathbb{R})^{2g} \cong (S^1 \times \mathbb{R})^{2g} \cong (\mathbb{C}^*)^{2g}$$

and hence $M_{Betti}(C, 1) \cong M_{Dol}(C, 1)$ as expected.

3 Variations of Hodge structure and \mathbb{C}^* -actions

Definition 3.1. A \mathbb{C} -variation of Hodge structure on a complex manifold S of weight n is the data of a local system \mathbb{V} on S together with a decreasing filtration $F^{\bullet}V$ on $V = \mathbb{V} \otimes \mathcal{O}_S$ and a flat connection $\nabla : V \to V \otimes \Omega^1_X$ such that

1. on the fibers of V, the induced filtration $F^{\bullet}V_s$ on V_s makes V_s into a Hodge structure of weight n,

2. (Griffiths transversality) - for all p, we have that $\nabla(F^p V) \subseteq F^{p-1} \otimes \Omega^1_X$.

Remark 3.2. The Griffiths transversality condition is there because if $\mathbb{V} = R^i \pi_* \underline{\mathbb{C}}$ for some smooth proper map $\pi : X \to S$, Griffiths transversality is always satisfied.

Definition 3.3. Let (V, F^{\bullet}, ∇) be a \mathbb{C} -VHS on S. Then, write $E^p = F^p V/F^{p-1}V$ and $\theta_p : E^p \to E^{p-1} \otimes \Omega^1_X$ the induced map from ∇ . Then, set $E = \oplus E_p$ and $\theta = \oplus \theta_p$. We call (E, θ) the Higgs bundle induced from (V, F^{\bullet}, ∇) . If (E, θ) is a Higgs bundle which comes from this construction, we say that (E, θ) is a system of Hodge bundles.

There is an action of \mathbb{C}^* on $M_{\text{Dol}}(X, r)$ given by $t \cdot (E, \theta) = (E, t\theta)$. Note that in the graded case (i.e., (E, θ) is a system of Hodge bundles), t acts on E^p by t^p .

Lemma 3.4. Let $(E, \theta) \cong (E, t\theta)$ for some $t \in \mathbb{C}^*$ such that t is not a root of unity. Then, E has the structure of a system of Hodge bundles.

Proof. Let $f: E \to E$ be an automorphism such that $f\theta = t\theta f$. Then the characteristic polynomial of f is given by $p(z) = z^r + a_1 z^{r-1} + \cdots + a_r$ where $a_j = (-1)^j \operatorname{tr}(\wedge^j f)$ where $r = \operatorname{rank} E$. But since X is a compact complex manifold, the $\operatorname{tr}(\wedge^j f)$ are all constant. Hence, p(z) has constant eigenvalues. We can

then write $E = \oplus E_{\lambda}$ where λ are the roots of p(z) and $E_{\lambda} = \ker(f - \lambda)^n$ are the generalized Eigenspaces of f. Then,

$$(f - t\lambda)^n \theta = t^n \theta (f - \lambda)^n$$

so θ maps the eigenspace E_{λ} to the $E_{t\lambda}$ eigenspace. So, we get eigenspaces for $\lambda, t\lambda, \ldots, t^s\lambda$, with $t^{-1}\lambda$ and $t^{s+1}\lambda$ not eigenvalues. (Here, we are using the fact that t is not a root of unity.) Then setting $E^p = E_{t^{s-p}\lambda}$ we have that $\theta(E^p) \subseteq E^{p-1} \otimes \Omega^1_X$. Therefore we get the structure of a system of Hodge bundles.

Therefore, systems of Hodge bundles (\mathbb{C} -VHS), are precisely the fixed points of the \mathbb{C}^* -action. We use this description to study certain special points in the various moduli spaces.

Corollary 3.5. Let X and Y are compact Kähler manifolds and $f : Y \to X$ is a map such that $f_* : \pi_1(Y) \to \pi_1(X)$ is surjective. If V is a bundle such that f^*V comes from a \mathbb{C} -VHS on Y, then V comes from a \mathbb{C} -VHS on X. An example where this theorem applies is when, for example, Y is a hyperplane section of X. Then the Lefschetz hyperplane theorem tells us that we have an injection $H^{n-1}(X,\mathbb{Z}) \to H^{n-1}(Y,\mathbb{Z})$ which corresponds to a surjection on fundamental groups.

Proof. The action of \mathbb{C}^* commutes with f^* . If there are two local systems (representations) V_1 and V_2 such that $f^*V_1 \cong f^*V_2$, then $V_1 \cong V_2$ since f is surjective on fundamental groups. Let V_t be the local system given by the action of t on V. Then since f^*V is a \mathbb{C}^* -fixed point, we know that $f^*V \cong f^*V_t$ and so $V \cong V_t$. Therefore, V is a \mathbb{C}^* -fixed point and comes from a \mathbb{C} -VHS.

Definition 3.6. Let G be a reductive algebraic group. A representation $\rho : \pi_1(X) \to G$ is called rigid if it is an isolated point of $\operatorname{Hom}(\pi_1(X), G)//G$. Equivalently, the local monodromy data of X uniquely determines the representation up to isomorphism.

Corollary 3.7. Any rigid representation comes from a complex variation of Hodge structure.

Proof. Let (E, θ) be a Higgs bundle coming from a rigid representation. Let t_i be a sequence of elements of \mathbb{C}^* such that none of the t_i are roots of unity, and $\lim t_i = 1$. Then, $\lim_{i\to\infty} (E, t_i\theta) = (E, \theta)$.

Since (E, θ) is rigid as a representation of G, so $(E, \theta) \cong (E, t_n \theta)$ for some t_n as $t_i \to 1$. Therefore, by Lemma t, we know that (E, θ) is a system of Hodge bundles and hence comes from a C-VHS.

Lemma 3.8. Suppose X is a smooth projective variety, and G a reductive complex algebraic group. Any representation $\rho : \pi_1(X) \to G$ can be deformed to a representation which comes from a C-VHS.

Proof. We invoke the following fact: the map $h : M_{Dol}(X, r) \to C$ (where C is the space of polynomials with coefficients in $Sym^{\bullet}\Omega_X^1$) given by $h(E, \theta) = p_{\theta}(z)$ where $p_{\theta}(z)$ is the characteristic polynomial of θ , is proper.

Then, we take the limit $\lim_{t\to 0} (E, t\theta) = (E', \theta')$. Such a limit exists, since $\lim_{t\to 0} h(t\theta)$ approach z^r and then by properness of h, we get a limit (E', θ') . This limit is unique and hence is preserved by \mathbb{C}^* .

Remark 3.9. In the case of smooth projective curves of genus g, whenever g > 0 we never have rigid representations. This is because given a presentation of $\pi_1(C) = \langle a_1, \ldots, a_g, b_1, \ldots, b_g | \prod [a_i, b_i] \rangle$ and some conjugacy classes for each generator C_1, \ldots, C_{2g} , any representation (given by matrices A_1, \ldots, A_{2g} respecting the relations) can be deformed by considering $\lambda A_1, \ldots, \lambda A_{2g}$ for $\lambda \in \mathbb{C}^*$. This is not conjugation.

4 The parabolic case for curves

In the case where X is not a projective variety, we no longer know that any holomorphic vector bundle is an algebraic vector bundle since we cannot use GAGA. However, Deligne provides for us a solution a holomorphic vector bundle with flat connection does not have a unique algebraic structure, but it has a *canonical* algebraic bundle structure with a regular flat connection.

Definition 4.1. Let X be smooth and D a simple normal crossings divisor (locally looks like $V(x_1 \cdots x_n)$ and each of its components are smooth). We define a logarithmic form p-form ω with respect to D to be an algebraic p-form on $X \setminus D$ such that ω and $d\omega$ have poles of order at most 1 along D.

We set $\Omega^p_X(\log D)$ to be the sheaf of logarithmic *p*-forms with respect to *D*.

Example 4.2. We have a short exact sequence

$$0 \to \Omega^1_X \hookrightarrow \Omega^1_X(\log D) \to \oplus(i_j)_* \mathscr{O}_{D_j} \to 0$$

where $D = \sum D_j$ and i_j are the inclusions of D_j .

On a curve C, if $D = x_1 + \cdots + x_n$, our logarithmic 1-forms are locally of the form $f(z) \frac{dz}{z-x_i}$ as expected.

From now on, we assume X = C is a curve for simplicity.

Definition 4.3. A parabolic bundle E_* with respect to a divisor $D = x_1 + \cdots + x_n$ is a vector bundle E with the data

- 1. a flag $0 = E_{x_i}^0 \subseteq \cdots \subseteq E_{x_i}^{n_j} = E_{x_i}$
- 2. a sequence of real numbers $0 \le \alpha_i^1 < \cdots < \alpha_i^{n_j} < 1$.

Definition 4.4. Given a logarithmic connection $\nabla : E \to E \otimes \Omega^1_X(\log D)$, we set the residue at x_i to be the matrix $\operatorname{Res}(\nabla)(x_i) \in \operatorname{End}(E)_{x_i}$. Let $\eta_i^1, \ldots, \eta_i^{n_i}$ be the eigenvalues of $\operatorname{Res}(\nabla)(x_i)$. Then we define

$$\lambda_i^j = \operatorname{Re}(\eta_i^j) - \lfloor \operatorname{Re}(\eta_i^j) \rfloor \in [0, 1).$$

We reorder the λ_i^j so that $0 \leq \lambda_i^1 < \cdots < \lambda_i^{n_i} < 1$. We let $E_{x_i}^j$ be the direct sums of the generalized eigenspaces of the eigenvalues η_i^j and we set E_* to be the parabolic bundle with these flags and the weights λ_i^j .

Remark 4.5. The idea behind this $\lambda_i^j \in [0, 1)$ condition is that the flat bundle with connection $\nabla = d + \lambda \frac{dz}{z}$ on $\mathbb{A}^1 \setminus \{0\}$ which has residue λ . Then, the monodromy representation is given by $1 \mapsto e^{2\pi i \lambda}$. Note that there are many flat connections with this local monodromy - $d + (\lambda + 1)\frac{dz}{z}$, for example. However, requiring that $\lambda \in [0, 1)$ ensures that we get a unique flat bundle with logarithmic singularities.

Definition 4.6. We set the parabolic degree of a parabolic bundle E_* to be

$$\operatorname{par-deg}(E_*) = \deg E + \sum_{i=1}^n \sum_{k=1}^{n_i} \alpha_i^k \cdot \dim(E_{x_i}^k / E_{x_i}^{k-1}).$$

We set the parabolic slope to be $\mu_*(E_*) = \text{par-deg}(E_*)/\operatorname{rank} E$, and we call E_* parabolic stable if for all subbundles F_* , $\mu_*(F_*) < \mu_*(E_*)$. If E_* is a parabolic Higgs bundle (a pair (E_*, θ) where $\theta : E \to E \otimes \Omega^1_X(\log D)$ is a \mathscr{O}_X -linear map), we call it stable if stability holds with respect to all sub-Higgs bundles.

Theorem 4.7. Let C be a smooth proper curve and D a reduced effective divisor on C. There is a homeomorphism of moduli spaces $M_{Betti}(C \setminus D, r) \cong M_{dR}(C \setminus D, r) \cong M_{Dol}(C \setminus D, r)$ where $M_{dR}(C \setminus D, r)$ is the moduli space of flat logarithmic bundles on C with residues lying in [0, 1), and $M_{Dol}(C \setminus D, r)$ is the moduli space of polystable parabolic Higgs bundles.

Theorem 4.8. All of the results in section 3 (on C-VHS) hold in the parabolic case.