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Abstract

These are notes for a talk on Non-Abelian Hodge Theory for Elden’s Seminar. I want to talk about the
Riemann-Hilbert correspondence and the correspondence between Higgs bundles and local systems. In
particular, I want to talk about C-VHS and how it relates to the C∗ on the moduli space of Higgs bundles.
I then want to talk about parabolic Higgs bundles in the case of curves, especially when X = P1 \D.

1 From first year topology to non-abelian cohomology

Let X be a compact Kähler manifold (for example, any smooth projective variety over C). We have the
following isomorphisms:

Hom(π1(X),C)//C ∼= H1(X,C) ∼= H1
dR(X) ∼= H1

Dol(X) ∼= H1,0(X)⊕H0,1(X) ∼= H0(X,Ω1
X)⊕H1(X,OX).

The first isomorphism comes from the Universal Coefficient Theorem, the isomorphism between de Rham
and Dolbeault cohomology comes from the Kähler-ness of the manifold, and the last isomorphism comes
from the general result in Hodge theory that Hq(X,Ωp

X) = Hp,q(X). A class in cohomology [α] is
therefore equivalent to a 1-cocycle (gluing data for a rank 1 bundle) and a choice of 1-form on X.

We seek to study a non-abelian analogue of the phenomenon above, meaning the coefficients are some non-
abelian group. The most natural group, is of course, some matrix group. For now, we set G = GLn(C)
but if we let G be a subgroup (say, U(n), SU(n), SL2, etc. we get interesting behavior as well).

We define the following spaces:

Definition 1.1. Let MBetti(X, r) = Hom(π1(X),GLr(C))//GLr(C). This is the character variety of
π1(X). Let MdR(X, r) be the moduli space of flat vector bundles on X.

Theorem 1.2 - (Riemann-Hilbert). There are homeomorphisms MBetti(X, r) ∼= MdR(X, r) ∼= L,
where Lr is the space of local systems on X of rank r.

Proof. The maps are as follows:

1. f : MdR(X, r) → Lr is given by f : (V,∇) → ker(∇) with inverse V → (V⊗C OX , id⊗d).

2. MdR(X, r) → MBetti(X, r) is given by monodromy of solutions. This is a highly transcendental
operation, and I am not aware of any general method of writing out this map in coor-
dinates. Any special cases worked out (besides r = 1) would be extremely interesting!
Best to sketch a picture here. Make sure to mention that monodromy data around a puncture is
given by a conjugacy class because π1(X) is defined only up to conjugacy prior to picking a base
point, and that complex analysis can only detect homotopy classes of loops.

Remark 1.3. MBetti and MdR are meant to be non-abelian cohomology theories, but they do not have
a known group structure. These are only pointed spaces.

The story for abelian cohomology tells us that there should be a fourth space MDol(X, r) which is
analogous to Dolbeault cohomology and is homeomorphic to the first three. Points in this space should
consists of pairs (E, θ) where E is some sort vector bundle and θ is a 1-form.
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2 Higgs bundles

The correct object to put inside MDol(X, r) are rank r Higgs bundles on X.

Definition 2.1. A Higgs bundle (E, θ) on X is a (holomorphic) vector bundle E with a OX -linear map
θ : E → E ⊗ Ω1

X such that θ ∧ θ = 0.

We call a subbundle F ⊆ E a sub-Higgs bundle if θ(F ) ⊆ F ⊗ Ω1
X .

Remark 2.2. If X is a smooth projective variety, GAGA tells us that E is in fact an algebraic vector
bundle and θ is an algebraic End(E)-valued 1-form.

Definition 2.3. For a vector bundle W on X, write µ(W ) = c1(W ) · [ω]dimX−1/ rankW to be the slope
of W . A vector bundle V is stable (resp. semistable) if for all proper nonzero subbundles W ⊆ V we
have that µ(W ) < µ(V ) (resp. µ(W ) ≤ µ(V )).

We say a Higgs bundle (E, θ) is a stable Higgs bundle if µ(F ) < µ(E) for all sub-Higgs bundles F ⊆ E.

We say a Higgs bundle is polystable if it is the direct sum of stable Higgs bundles.

Definition 2.4. Let MDol(X, r) be the rank r polystable Higgs bundles such that c1(E) · [ω]dimX−1 =
c2(E) · [ω]dimX−2 = 0.

Theorem 2.5 - (Non-Abelian Hodge Theorem). There is a homeomorphism (a R-analytic isomor-
phism (this is meaningless) MDol(X, r) ∼= MBetti(X, r). The stable Higgs bundles correspond precisely to
the irreducible representations in MBetti(X, r).

Proof. Analysis through harmonic bundles. The c1(E) · [ω]dimX−1 = c2(E) · [ω]dimX−2 = 0 condition is
to ensure that certain metrics exist to make the analysis work.

Example 2.6. Let C be a smooth proper curve of genus g and let r = 1. Then, MDol(c, 1) ∼= Jac(C)×
H0(X,Ω1

X) ∼= (S1)2g × Cg. On the other hand, MBetti(C, 1) = Hom(H1(X),C∗) = Hom(Z2g,C∗) =
(C∗)2g. We know that

(S1)2g × Cg ∼= (S1)2g × (R)2g ∼= (S1 × R)2g ∼= (C∗)2g

and hence MBetti(C, 1) ∼= MDol(C, 1) as expected.

3 Variations of Hodge structure and C∗-actions

Definition 3.1. A C-variation of Hodge structure on a complex manifold S of weight n is the data of
a local system V on S together with a decreasing filtration F •V on V = V ⊗ OS and a flat connection
∇ : V → V ⊗ Ω1

X such that

1. on the fibers of V , the induced filtration F •Vs on Vs makes Vs into a Hodge structure of weight n,

2. (Griffiths transversality) - for all p, we have that ∇(F pV ) ⊆ F p−1 ⊗ Ω1
X .

Remark 3.2. The Griffiths transversality condition is there because if V = Riπ∗C for some smooth
proper map π : X → S, Griffiths transversality is always satisfied.

Definition 3.3. Let (V, F •,∇) be a C-VHS on S. Then, write Ep = F pV/F p−1V and θp : Ep →
Ep−1 ⊗Ω1

X the induced map from ∇. Then, set E = ⊕Ep and θ = ⊕θp. We call (E, θ) the Higgs bundle
induced from (V, F •,∇). If (E, θ) is a Higgs bundle which comes from this contstruction, we say that
(E, θ) is a system of Hodge bundles.

There is an action of C∗ on MDol(X, r) given by t · (E, θ) = (E, tθ). Note that in the graded case (i.e.,
(E, θ) is a system of Hodge bundles), t acts on Ep by tp.

Lemma 3.4. Let (E, θ) ∼= (E, tθ) for some t ∈ C∗ such that t is not a root of unity. Then, E has the
structure of a system of Hodge bundles.

Proof. Let f : E → E be an automorphism such that fθ = tθf . Then the characteristic polynomial of f
is given by p(z) = zr + a1z

r−1 + · · ·+ ar where aj = (−1)j tr

∧jf


where r = rankE. But since X is a

compact complex manifold, the tr

∧jf


are all constant. Hence, p(z) has constant eigenvalues. We can
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then write E = ⊕Eλ where λ are the roots of p(z) and Eλ = ker(f −λ)n are the generalized Eigenspaces
of f . Then,

(f − tλ)nθ = tnθ(f − λ)n

so θ maps the eigenspace Eλ to the Etλ eigenspace. So, we get eigenspaces for λ, tλ, . . . , tsλ, with t−1λ
and ts+1λ not eigenvalues. (Here, we are using the fact that t is not a root of unity.) Then setting
Ep = Ets−pλ we have that θ(Ep) ⊆ Ep−1 ⊗ Ω1

X . Therefore we get the structure of a system of Hodge
bundles.

Therefore, systems of Hodge bundles (C-VHS), are precisely the fixed points of the C∗-action. We use
this description to study certain special points in the various moduli spaces.

Corollary 3.5. Let X and Y are compact Kähler manifolds and f : Y → X is a map such that
f∗ : π1(Y ) → π1(X) is surjective. If V is a bundle such that f∗V comes from a C-VHS on Y , then
V comes from a C-VHS on X. An example where this theorem applies is when, for example, Y is a
hyperplane section of X. Then the Lefschetz hyperplane theorem tells us that we have an injection
Hn−1(X,Z) → Hn−1(Y,Z) which corresponds to a surjection on fundamental groups.

Proof. The action of C∗ commutes with f∗. If there are two local systems (representations) V1 and V2

such that f∗V1
∼= f∗V2, then V1

∼= V2 since f is surjective on fundamental groups. Let Vt be the local
system given by the action of t on V . Then since f∗V is a C∗-fixed point, we know that f∗V ∼= f∗Vt

and so V ∼= Vt. Therefore, V is a C∗-fixed point and comes from a C-VHS.

Definition 3.6. Let G be a reductive algebraic group. A representation ρ : π1(X) → G is called rigid
if it is an isolated point of Hom(π1(X), G)//G. Equivalently, the local monodromy data of X uniquely
determines the representation up to isomorphism.

Corollary 3.7. Any rigid representation comes from a complex variation of Hodge structure.

Proof. Let (E, θ) be a Higgs bundle coming from a rigid representation. Let ti be a sequence of elements
of C∗ such that none of the ti are roots of unity, and lim ti = 1. Then, limi→∞(E, tiθ) = (E, θ).

Since (E, θ) is rigid as a representation of G, so (E, θ) ∼= (E, tnθ) for some tn as ti → 1. Therefore, by
Lemma t, we know that (E, θ) is a system of Hodge bundles and hence comes from a C-VHS.

Lemma 3.8. Suppose X is a smooth projective variety, and G a reductive complex algebraic group.
Any representation ρ : π1(X) → G can be deformed to a representation which comes from a C-VHS.

Proof. We invoke the following fact: the map h : MDol(X, r) → C (where C is the space of polynomials
with coefficients in Sym•Ω1

X) given by h(E, θ) = pθ(z) where pθ(z) is the characteristic polynomial of θ,
is proper.

Then, we take the limit limt→0(E, tθ) = (E′, θ′). Such a limit exists, since limt→0 h(tθ) approach zr and
then by properness of h, we get a limit (E′, θ′). This limit is unique and hence is preserved by C∗.

Remark 3.9. In the case of smooth projective curves of genus g, whenever g > 0 we never have rigid
representations. This is because given a presentation of π1(C) = 〈a1, . . . , ag, b1, . . . , bg|


[ai, bi]〉 and

some conjugacy classes for each generator C1, . . . , C2g, any representation (given by matrices A1, . . . , A2g

respecting the relations) can be deformed by considering λA1, . . . ,λA2g for λ ∈ C∗. This is not conjuga-
tion.

4 The parabolic case for curves

In the case where X is not a projective variety, we no longer know that any holomorphic vector bundle
is an algebraic vector bundle since we cannot use GAGA. However, Deligne provides for us a solution -
a holomorphic vector bundle with flat connection does not have a unique algebraic structure, but it has
a canonical algebraic bundle structure with a regular flat connection.

Definition 4.1. LetX be smooth andD a simple normal crossings divisor (locally looks like V (x1 · · ·xn)
and each of its components are smooth). We define a logarithmic form p-form ω with respect to D to be
an algebraic p-form on X \D such that ω and dω have poles of order at most 1 along D.

We set Ωp
X(logD) to be the sheaf of logarithmic p-forms with respect to D.
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Example 4.2. We have a short exact sequence

0 → Ω1
X ↩→ Ω1

X(logD) → ⊕(ij)∗ODj → 0

where D =


Dj and ij are the inclusions of Dj .

On a curve C, if D = x1+ · · ·+xn, our logarithmic 1-forms are locally of the form f(z) dz
z−xi

as expected.

From now on, we assume X = C is a curve for simplicity.

Definition 4.3. A parabolic bundle E∗ with respect to a divisor D = x1 + · · ·+ xn is a vector bundle
E with the data

1. a flag 0 = E0
xi

⊆ · · · ⊆ E
nj
xi = Exi

2. a sequence of real numbers 0 ≤ α1
i < · · · < α

nj

i < 1.

Definition 4.4. Given a logarithmic connection ∇ : E → E⊗Ω1
X(logD), we set the residue at xi to be

the matrix Res(∇)(xi) ∈ End(E)xi . Let η
1
i , . . . , η

ni
i be the eigenvalues of Res(∇)(xi). Then we define

λj
i = Re(ηj

i )− ⌊Re(ηj
i )⌋ ∈ [0, 1).

We reorder the λj
i so that 0 ≤ λ1

i < · · · < λni
i < 1. We let Ej

xi
be the direct sums of the generalized

eigenspaces of the eigenvalues ηj
i and we set E∗ to be the parabolic bundle with these flags and the

weights λj
i .

Remark 4.5. The idea behind this λj
i ∈ [0, 1) condition is that the flat bundle with connection ∇ =

d + λ dz
z

on A1 \ {0} which has residue λ. Then, the monodromy representation is given by 1 → e2πiλ.
Note that there are many flat connections with this local monodromy - d + (λ + 1) dz

z
, for example.

However, requiring that λ ∈ [0, 1) ensures that we get a unique flat bundle with logarithmic singularities.

Definition 4.6. We set the parabolic degree of a parabolic bundle E∗ to be

par-deg(E∗) = degE +

n

i=1

ni

k=1

αk
i · dim(Ek

xi
/Ek−1

xi
).

We set the parabolic slope to be µ∗(E∗) = par-deg(E∗)/ rankE, and we call E∗ parabolic stable if for
all subbundles F∗, µ∗(F∗) < µ∗(E∗). If E∗ is a parabolic Higgs bundle (a pair (E∗, θ) where θ : E →
E ⊗ Ω1

X(logD) is a OX -linear map), we call it stable if stability holds with respect to all sub-Higgs
bundles.

Theorem 4.7. Let C be a smooth proper curve and D a reduced effective divisor on C. There is a
homeomorphism of moduli spaces MBetti(C\D, r) ∼= MdR(C\D, r) ∼= MDol(C\D, r) where MdR(C\D, r)
is the moduli space of flat logarithmic bundles on C with residues lying in [0, 1), and MDol(C \D, r) is
the moduli space of polystable parabolic Higgs bundles.

Theorem 4.8. All of the results in section 3 (on C-VHS) hold in the parabolic case.
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