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Abstract

These are notes for a talk on Non-Abelian Hodge Theory for Elden’s Seminar. I want to talk about the
Riemann-Hilbert correspondence and the correspondence between Higgs bundles and local systems. In
particular, I want to talk about C-VHS and how it relates to the C* on the moduli space of Higgs bundles.
I then want to talk about parabolic Higgs bundles in the case of curves, especially when X = P* \ D.

1 From first year topology to non-abelian cohomology

Let X be a compact Kéhler manifold (for example, any smooth projective variety over C). We have the
following isomorphisms:

Hom(m (X),C)//C = H'(X,C) = Hig(X) = Hpa(X) = H'(X) & H"'(X) = H"(X,Qx) ® H' (X, Ox).

The first isomorphism comes from the Universal Coefficient Theorem, the isomorphism between de Rham
and Dolbeault cohomology comes from the Ké&hler-ness of the manifold, and the last isomorphism comes
from the general result in Hodge theory that HY(X,Q%) = H”Y(X). A class in cohomology [a] is
therefore equivalent to a 1-cocycle (gluing data for a rank 1 bundle) and a choice of 1-form on X.

We seek to study a non-abelian analogue of the phenomenon above, meaning the coefficients are some non-
abelian group. The most natural group, is of course, some matrix group. For now, we set G = GL,(C)
but if we let G be a subgroup (say, U(n), SU(n), SL2, etc. we get interesting behavior as well).

We define the following spaces:

Definition 1.1. Let Mgetti(X, ) = Hom(m (X), GL,-(C))// GL,-(C). This is the character variety of
7m1(X). Let Mar(X,7) be the moduli space of flat vector bundles on X.

Theorem 1.2 - (Riemann-Hilbert). There are homeomorphisms Mpeti (X, 7) & Mar(X,r) = L,
where L, is the space of local systems on X of rank r.

Proof. The maps are as follows:
1. f:Mar(X,r) = L, is given by f : (V, V) — ker(V) with inverse V — (V ®c Ox,id ®@d).

2. Mar(X,r) = Mpgetti (X, ) is given by monodromy of solutions. This is a highly transcendental
operation, and I am not aware of any general method of writing out this map in coor-
dinates. Any special cases worked out (besides r = 1) would be extremely interesting!
Best to sketch a picture here. Make sure to mention that monodromy data around a puncture is
given by a conjugacy class because m1(X) is defined only up to conjugacy prior to picking a base
point, and that complex analysis can only detect homotopy classes of loops.

O

Remark 1.3. Mgeti and Mgr are meant to be non-abelian cohomology theories, but they do not have
a known group structure. These are only pointed spaces.

The story for abelian cohomology tells us that there should be a fourth space Mpoi(X,r) which is
analogous to Dolbeault cohomology and is homeomorphic to the first three. Points in this space should
consists of pairs (F,0) where F is some sort vector bundle and 6 is a 1-form.



2 Higgs bundles

The correct object to put inside Mpoi (X, r) are rank r Higgs bundles on X.

Definition 2.1. A Higgs bundle (E,0) on X is a (holomorphic) vector bundle E with a Ox-linear map
0: E — E® Q% such that § A0 = 0.

We call a subbundle F' C E a sub-Higgs bundle if §(F) C F ® Q.

Remark 2.2. If X is a smooth projective variety, GAGA tells us that F is in fact an algebraic vector
bundle and 6 is an algebraic End(E)-valued 1-form.

Definition 2.3. For a vector bundle W on X, write u(W) = ¢1 (W) - [w]*™ X =1/ rank W to be the slope
of W. A vector bundle V is stable (resp. semistable) if for all proper nonzero subbundles W C V we
have that (W) < u(V) (resp. p(W) < p(V)).

We say a Higgs bundle (E, ) is a stable Higgs bundle if u(F) < p(E) for all sub-Higgs bundles F' C E.

We say a Higgs bundle is polystable if it is the direct sum of stable Higgs bundles.

Definition 2.4. Let Mpo(X,r) be the rank r polystable Higgs bundles such that c1(E) - [w]dimX =1 =
C2(E) . [w]dlm X—-2 =0.

Theorem 2.5 - (Non-Abelian Hodge Theorem). There is a homeomorphism (a R-analytic isomor-
phism (this is meaningless) Mpol1(X, ) 2 Mpetti (X, 7). The stable Higgs bundles correspond precisely to
the irreducible representations in Mpei (X, 7).

Proof. Analysis through harmonic bundles. The ci(E) - [w]"™ ¥ ! = ¢3(E) - [w]%™X~2 = 0 condition is

to ensure that certain metrics exist to make the analysis work. O

Example 2.6. Let C be a smooth proper curve of genus g and let » = 1. Then, Mpoi(c, 1) = Jac(C') x
H(X, Q%) = (S')% x CY. On the other hand, Mpewi(C,1) = Hom(H;(X),C*) = Hom(Z*?,C*) =
(C*)?9. We know that

(S1)% x €7 = (5% x (R)* = (" x R)* = (C*)*

and hence Mgeti(C, 1) 2 Mpei(C, 1) as expected.

3 Variations of Hodge structure and C*-actions

Definition 3.1. A C-variation of Hodge structure on a complex manifold S of weight n is the data of
a local system V on S together with a decreasing filtration F*V on V = V ® O and a flat connection
V:V =V ®Qk% such that

1. on the fibers of V, the induced filtration F*V; on Vi makes Vs into a Hodge structure of weight n,
2. (Griffiths transversality) - for all p, we have that V(F?PV) C FP~! @ Q%.

Remark 3.2. The Griffiths transversality condition is there because if V = Rm.C for some smooth
proper map 7 : X — S, Griffiths transversality is always satisfied.

Definition 3.3. Let (V, F*,V) be a C-VHS on S. Then, write E? = FPV/FP~'V and 6, : EP —
EP~' ® Q% the induced map from V. Then, set E = ®E, and § = ®f,. We call (E,6) the Higgs bundle
induced from (V, F*,V). If (E,0) is a Higgs bundle which comes from this contstruction, we say that
(E,0) is a system of Hodge bundles.

There is an action of C* on Mpei(X,r) given by ¢ - (E,6) = (E,t6). Note that in the graded case (i.e.,
(E,0) is a system of Hodge bundles), ¢ acts on E? by ¢*.
Lemma 3.4. Let (E,0) = (E,t0) for some ¢t € C* such that ¢ is not a root of unity. Then, E has the

structure of a system of Hodge bundles.

Proof. Let f: E — E be an automorphism such that f0 = t0f. Then the characteristic polynomial of f
is given by p(z) = 2" +a12" "' 4 - -- + ar where a; = (-1)/ tr(A’ f) where r = rank E. But since X is a
compact complex manifold, the tr(/\J f ) are all constant. Hence, p(z) has constant eigenvalues. We can



then write E = @Ey where A are the roots of p(z) and Ex = ker(f —\)™ are the generalized Eigenspaces
of f. Then,

(f=tN"0=t"0(f — )"

so 6 maps the eigenspace Ex to the E;\ eigenspace. So, we get eigenspaces for X, tA, ..., t°\, with t7*A
and t*T* X\ not eigenvalues. (Here, we are using the fact that ¢ is not a root of unity.) Then setting
E? = E,s—p, we have that 0(EP) C EP~' ® Q%. Therefore we get the structure of a system of Hodge
bundles. O

Therefore, systems of Hodge bundles (C-VHS), are precisely the fixed points of the C*-action. We use
this description to study certain special points in the various moduli spaces.

Corollary 3.5. Let X and Y are compact Kéhler manifolds and f : ¥ — X is a map such that
fo : m(Y) — mi(X) is surjective. If V is a bundle such that f*V comes from a C-VHS on Y, then
V comes from a C-VHS on X. An example where this theorem applies is when, for example, Y is a
hyperplane section of X. Then the Lefschetz hyperplane theorem tells us that we have an injection
H"™Y(X,Z) — H"" (Y, Z) which corresponds to a surjection on fundamental groups.

Proof. The action of C* commutes with f*. If there are two local systems (representations) Vi and Vs
such that f*V; & f*Va, then V4 = V5 since f is surjective on fundamental groups. Let V; be the local
system given by the action of ¢ on V. Then since f*V is a C*-fixed point, we know that f*V = f*V;
and so V = V;. Therefore, V is a C*-fixed point and comes from a C-VHS. O

Definition 3.6. Let G be a reductive algebraic group. A representation p : m1(X) — G is called rigid
if it is an isolated point of Hom(w1(X),&)//G. Equivalently, the local monodromy data of X uniquely
determines the representation up to isomorphism.

Corollary 3.7. Any rigid representation comes from a complex variation of Hodge structure.

Proof. Let (F,0) be a Higgs bundle coming from a rigid representation. Let ¢; be a sequence of elements
of C* such that none of the t; are roots of unity, and lim¢; = 1. Then, lim; o (E, t;0) = (E,0).

Since (E, ) is rigid as a representation of G, so (F,0) = (E,t,0) for some t, as t; — 1. Therefore, by
Lemma ¢, we know that (E, ) is a system of Hodge bundles and hence comes from a C-VHS. O

Lemma 3.8. Suppose X is a smooth projective variety, and G a reductive complex algebraic group.
Any representation p : m1(X) — G can be deformed to a representation which comes from a C-VHS.

Proof. We invoke the following fact: the map h : Mpoi(X,r) — C (where C' is the space of polynomials
with coefficients in Sym®Q% ) given by h(FE, 6) = pe(z) where p(z) is the characteristic polynomial of 6,
is proper.

Then, we take the limit lim;_o(E,t0) = (E’,0’). Such a limit exists, since lim;_,o h(tf) approach 2" and
then by properness of h, we get a limit (E’,0"). This limit is unique and hence is preserved by C*. O

Remark 3.9. In the case of smooth projective curves of genus g, whenever g > 0 we never have rigid
representations. This is because given a presentation of m(C) = (aa,...,aq,b1,...,bg|[][as,b:]) and
some conjugacy classes for each generator C1, ..., Ca4, any representation (given by matrices A1, ..., Agg
respecting the relations) can be deformed by considering A1, ..., A2y for A € C*. This is not conjuga-
tion.

4 The parabolic case for curves

In the case where X is not a projective variety, we no longer know that any holomorphic vector bundle
is an algebraic vector bundle since we cannot use GAGA. However, Deligne provides for us a solution -
a holomorphic vector bundle with flat connection does not have a unique algebraic structure, but it has
a canonical algebraic bundle structure with a regular flat connection.

Definition 4.1. Let X be smooth and D a simple normal crossings divisor (locally looks like V' (z1 - - - )
and each of its components are smooth). We define a logarithmic form p-form w with respect to D to be
an algebraic p-form on X \ D such that w and dw have poles of order at most 1 along D.

We set Q% (log D) to be the sheaf of logarithmic p-forms with respect to D.



Example 4.2. We have a short exact sequence
0 — Qx < Qx(log D) — ®(i;)«Op, — 0

where D =Y D, and i; are the inclusions of D;.

dz

z—x;

On a curve C, if D = x1 + - -+ y, our logarithmic 1-forms are locally of the form f(z) as expected.

From now on, we assume X = C'is a curve for simplicity.
Definition 4.3. A parabolic bundle E, with respect to a divisor D = z1 + - -+ + x,, is a vector bundle
E with the data

1. aflag0=E2 C--- CE;} =E,,

2. a sequence of real numbers 0 < o} < --- < a?j < 1.

Definition 4.4. Given a logarithmic connection V : E — E ® Q% (log D), we set the residue at x; to be
the matrix Res(V)(z:) € End(E)s,;. Let n},..., 1" be the eigenvalues of Res(V)(x;). Then we define

N, = Re(n]) — [Re(n})] € [0,1).

We reorder the X so that 0 < A} < --- < A7 < 1. We let EJ, be the direct sums of the generalized
eigenspaces of the eigenvalues n] and we set F. to be the parabolic bundle with these flags and the
weights A7.

Remark 4.5. The idea behind this A} € [0,1) condition is that the flat bundle with connection V =
d+ )\% on A'\ {0} which has residue A. Then, the monodromy representation is given by 1 — €™},
Note that there are many flat connections with this local monodromy - d + (A + 1)%, for example.
However, requiring that A € [0, 1) ensures that we get a unique flat bundle with logarithmic singularities.

Definition 4.6. We set the parabolic degree of a parabolic bundle F. to be

n n;

par-deg(E,) = deg E + Z Z af dim(Efi/Efi_l).

i=1 k=1

We set the parabolic slope to be p.(E.) = par-deg(E.)/rank E, and we call E, parabolic stable if for
all subbundles Fi, p.(Fy) < p«(Ex). If E. is a parabolic Higgs bundle (a pair (Ex,6) where 6 : E —
E ® Q% (log D) is a Ox-linear map), we call it stable if stability holds with respect to all sub-Higgs
bundles.

Theorem 4.7. Let C be a smooth proper curve and D a reduced effective divisor on C. There is a
homeomorphism of moduli spaces Mpei (C'\ D, 1) = Mar (C\ D, 1) = Mpol(C'\ D, r) where Mar (C\ D, )
is the moduli space of flat logarithmic bundles on C' with residues lying in [0,1), and Mpo(C \ D, r) is
the moduli space of polystable parabolic Higgs bundles.

Theorem 4.8. All of the results in section 3 (on C-VHS) hold in the parabolic case.



