Six Functor Formalisms

Charlie Wu

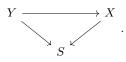
July 15, 2024

Abstract

We discuss six functor formalisms, especially within the context of Étale cohomology

1 Introduction

Grothendieck taught us that we should always think about geometry in a relative context: that is, we should be studying categories of S-schemes for some base S. That is, our objects are of the form $X \to S$ and our morphisms are commutative triangles



Consequently, if we wish to study $H^{\bullet}(X)$, where H^{\bullet} is some (reasonable) cohomology theory, we then may wish to study cohomology in a relative way. That is, to study $H^{\bullet}(X)$ we may want to study all morphisms $f^*: H^{\bullet}(Y) \to H^{\bullet}(X)$ (and the same for f_* , derived pushforwards, f_1 , etc).

For this reason, even if X is very nice (say smooth, projective, irreducible), we still might want to study the cohomology of non-proper spaces.

Example 1. If Y = * is a point, then $f_* : \operatorname{Sh}(X) \to \operatorname{Sh}(*)$ coincides with the global sections functor, since $f_*F(*) = F(f^{-1}(*)) = F(X) = \Gamma(X, F)$. Then, taking higher derived functors yields $R^n f_*F = H^n(X, F)$ and therefore we obtain sheaf cohomology through the relative perspective.

Example 2. If Y = * is a point, then $f_!F$ recovers compactly supported global sections of F. Taking higher derived functors then gives us compactly supported cohomology: $R^n f_!F = H_c(X, F)$.

Since we are studying derived functors, we will need to pass to derived categories.

2 Categorical considerations

Definition 3. Let \mathcal{A} be an abelian category. We write $K(\mathcal{A})$ to be the category of chain complexes \mathcal{A} . That is,

- 1. the objects of $K(\mathcal{A})$ are chain complexes $(K^{\bullet}, d^{\bullet})$ where for all i, K^{i} is an object of \mathcal{A} .
- 2. the morphisms are chain morphisms $f^{\bullet}: (C^{\bullet}, d^{\bullet}) \to (K^{\bullet}, d^{\bullet})$.

We let $D(\mathcal{A})$ be the localization of $K(\mathcal{A})$ with respect to quasi-isomorphisms. The subcategory $D^b(\mathcal{A})$ of $D(\mathcal{A})$ consists of those chain complexes with only finitely many nonzero terms. We write $D^+(\mathcal{A})$ to be the subcategory consisting of objects $(K^{\bullet}, d^{\bullet})$ such that $K^n = 0$ for some n < 0.

Definition 4. Let $F : \mathcal{A} \to \mathcal{B}$ be a functor of abelian categories. Let $i : D^+(\mathcal{A}) \to K^+(\text{Inj}(\mathcal{A}))$ be the functor sending a chain complex to an injective resolution of the chain complex. This is an equivalence of categories, and hence we can consider the composition

$$D^+(\mathcal{A}) \to K^+(\operatorname{Inj}(\mathcal{A})) \to K^+(\mathcal{B}) \to D^+(\mathcal{B}).$$

This composition is the total derived functor $RF: D^+(\mathcal{A}) \to D^+(\mathcal{B})$.

Example 5. The total derived functor RF is related to R^nF via the fact $R^nF(X) = H^n(RF(X))$.

We are primarily interested in the case when \mathcal{A} is some reasonable category of sheaves.

Example 6. The functor $Rf_!$ does not always admit an adjoint. But if X and Y are locally compact Hausdorff spaces, then we get an adjoint $f^!: D(Sh(Y)) \to D(Sh(X))$.

Definition 7. Given a morphism $f : X \to Y$ (in good situations), we have the following six functors: $Rf_*, Lf_*, Rf_!, f^!, - \otimes -$ and Hom(-, -).

3 The six operations

Definition 8. Let $(C(X), \otimes, \text{Hom})$ be a triangulated tensor category (I suggest you look this up on nlab. The definition is long. For our purposes, you can replace C(X) with D(Sh(X)) or the derived category of constructible ℓ -adic sheaves, etc.) Given a morphism $f: X \to Y$, we get adjunctions $f^* \dashv f_*$ and $f_! \dashv f^!$ and we have a natural transformation $f_! \to f_*$. We call the functors \otimes , Hom, $f_*, f^*, f_!$, and $f^!$ Grothendieck's six operations.

Note that we want f^* to respect tensor products, much like in the case of vector bundles.

Example 9. Let $p: X \to B$ be a morphism. Then for any $F \in C(X)$, $H^{\bullet}(X, F) = p_*F \in C(B)$ and $H^{\bullet}_c(X, F) = p_!F \in C(B)$. To recover the honest cohomology groups, we have that

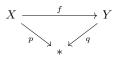
$$H^{n}(X, F) = \hom_{C(B)}(\mathbb{I}, p_{*}F[n])$$
$$H^{n}_{c}(X, F) = \hom_{C(B)}(\mathbb{I}, p_{!}F[n])$$

where \mathbb{I} is the unit object in C(B) and [n] denotes shifting the indexing by n.

When $F = \mathbb{I}$, we just write then $H^{\bullet}(X)$ and $H^{\bullet}_{c}(X)$.

Example 10. Let k be a field such that ℓ is invertible, and $\operatorname{cd}_{\ell}(k) < \infty$. Then, $C(X) = D_c^b(X, \mathbb{Q}_{\ell})$ (the bounded derived category of constructible ℓ -adic sheaves) gives us ℓ -adic cohomology.

Example 11. Consider the relative situation



Then since f^* and f_* form an adjoint pair we get that there is a morphism id $\to f_*f^*$ and hence a morphism $\eta: q_* \to q_*f_*f^* = p_*f^*$. We then get a morphism on cohomology

$$H^{\bullet}(Y,F) = H^{\bullet}(X,f^*F).$$

Similarly, by adjunction we have a map $q_! \to q_! f_* f^*$. If f is proper, we have an isomorphism $f_* \cong f_!$ and so $q_! f_* f^* = q_! f_! f^* = p_! f^*$. Then, we get a morphism

$$H^{\bullet}_{c}(Y,F) \to H^{n}_{c}(X,f^{*}F).$$

Example 12. Let $p: X \to B$ be a morphism. Then since p^* respects tensor products, p_* sends commutative algebras in C(X) to commutative algebras in C(B). (A commutative algebra in C(X) is an object K such that $K \otimes K \to K$ gives K the structure of a commutative algebra.)Then, $H^{\bullet}(X) = p_* \mathbb{I} \in C(B)$ has the structure of a commutative algebra, from which we get the cup product on cohomology.

4 Duality

Example 13. Let X be a smooth manifold of dimension d, and let $f: X \to *$ be the unique map. Let R be a ring. Let C(X) be the category of singular cochains (with quasi-isomorphisms localized). Then, $f^! \mathbb{I} = \omega_{X,\mathbb{Z}}[d]$ is the shifted \mathbb{Z} -orientation sheaf. Then, X is orientable if and only if $\omega_{X,R}$ is the constant sheaf R.

Example 14. Let X be a smooth k-variety of dimension d. Let C(X) be the derived category of (bounded) coherent sheaves on X. If $f: X \to \operatorname{Spec}(k)$, then $f^! k \cong \omega_X[d]$ is the shifted canonical sheaf on X.

Example 15. Let X be a smooth k-variety of dimension d, and ℓ a prime invertible in k. Let $f: X \to$ Spec(k) be the structure morphism. Let C(X) be the derived category of ℓ -adic sheaves on X. Then $f^! \mathbb{Q}_{\ell} = \mathbb{Q}_{\ell}(d)[2d]$ where $\mathbb{Q}_{\ell}(d)$ is the d-th Tate twist.

Theorem 16. Let the assumptions of example 13 to 15 hold in the following situations, respectively:

- 1. (Poincaré duality): if X is orientable, then $H^n_c(X, \mathbb{Q})^{\vee} \cong H^{d-n}(X, \mathbb{Q})$.
- 2. (Serre duality): if X is proper, $H^n(X, \mathscr{O}_X)^{\vee} \cong H^{d-n}(X, \omega_X)$.
- 3. (Poincaré duality in the ℓ -adic setting): $H^n_c(X, \mathbb{Q}_\ell)^{\vee} \cong H^{2d-n}(X, \mathbb{Q}_\ell(d)).$

Proof. Since either X is proper or we are dealing with compactly supported cohomology in all three situations, the following computation suffices to prove all three simultaneously.

We have that after dualizing,

$$H_c^n(X)^{\vee} = \hom(f_!f^*\mathbb{I}[n],\mathbb{I}).$$

Then by adjunction,

$$\hom(f_!f^*\mathbb{I}[n],\mathbb{I}) = \hom(\mathbb{I},f_*f^!\mathbb{I}[-n])$$

which is then each of the desired cohomology groups, when replacing $f^! \mathbb{I}$ with $\omega_{X,R}[d]$, $\omega_X[d]$, and $\mathbb{Q}_{\ell}(d)[2d]$.

Observe that in each case, $f^! \mathbb{I}$ serves as our dualizing object. This is true in general - if we have a dualizing object, it will be $f^! \mathbb{I}$.